Synthesis and Structures of Novel Low-Valent Group 14 1,3-Dimetallacyclobutanes and a Mixed-Metal 1,3-Stanna-Plumbacyclobutane

Wing-Por Leung,* Zhong-Xia Wang, Hung-Wing Li, Qing-Chuan Yang, and Thomas C. W. Mak

Department of Chemistry
The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China

Received November 27, 2000
1,3-Digermacyclobutane $\mathrm{R}_{2} \mathrm{Ge}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{GeR}_{2}(\mathrm{R}=\mathrm{Me}$ (II) or Ph) has been proposed as the cycloaddition product from the unstable intermediate $\left[\mathrm{R}_{2} \mathrm{Ge}=\mathrm{CH}_{2}\right]$ generated from the four-membered ring heterocycles I (Scheme 1) ${ }^{1}$ or $\mathrm{Ph}_{2} \mathrm{Ge}\left(\mathrm{CH}_{2}\right)_{3}{ }^{2}{ }^{2}$

Synthetic methods and structures of stable group 14 compounds with $\mathrm{M}=\mathrm{C}$ bond have been reviewed. ${ }^{3,4}$ By contrast, the heavier congener plumbenes ($>\mathrm{Pb}=\mathrm{C}<$) and in particular the low-valent group 14 vinylidene analogues $[: M=C<]$ are scarce. This could be due to the fact that less steric crowding at the low-coordinate metal center renders oligomerization more readily. Nevertheless, unstable silavinylidene $\left[: \mathrm{Si}=\mathrm{CH}_{2}\right.$] and germavinylidene $\left[: \mathrm{Ge}=\mathrm{CH}_{2}\right.$] had been detected and studied by laser-induced fluorescence spectroscopy. ${ }^{5}$ Theoretical studies of the electronic states of germavinylidene [: $\mathrm{Ge}=\mathrm{CH}_{2}$] have also been carried out using ab initio quantum mechanical methods. ${ }^{6}$ We here report the synthesis and structural characterization of a series of low-valent group 14 1,3-dimetallacyclobutanes and an unusual 1,3-stanna-plumbacyclobutane. These compounds represent the first series of lowvalent group 14 1,3-dimetallacyclobutanes being isolated and structurally characterized.

The supporting ligand used is based on the deprotonation of the methylene backbone of iminophosphorano(pyridyl)methane $\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)\left(2-\mathrm{Py}^{2}\right) \mathrm{CH}_{2}(\mathbf{1})$. Compound 1 was prepared by heating $\operatorname{Pr}_{2}{ }_{2} \mathrm{P}(2-\mathrm{Py}) \mathrm{CH}_{2}$ with $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ at $70-100{ }^{\circ} \mathrm{C}$ followed by vaccum distillation. Deprotonation of $\mathbf{1}$ using $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ in THF afforded yellow crystalline solids of lithium methanide $\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{P}=\right.$ $\left.\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py}) \mathrm{CHLi}(\mathrm{THF})_{2}$ (2) in 89.5% yield. Treatment of 2 equiv of $\mathbf{2}$ with GeCl_{2} (dioxane) in diethyl ether afforded the lowvalent 1,3-digermacyclobutane 1,3-[Ge\{C($\left.\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-$ $\mathrm{Py})\}]_{2}(3)$ in good yield. Similar reactions with SnCl_{2} and PbCl_{2} afforded the 1,3-distannacyclobutane 1,3-[$\mathrm{Sn}\left\{\mathrm{C}\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)-\right.$ (2-Py) $\}]_{2}$ (4) and 1,3-diplumbacyclobutane $1,3-\left[\mathrm{Pb}\left\{\mathrm{C}\left(\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{P}=\right.\right.\right.$ $\left.\left.\left.\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})\right\}\right]_{2}(\mathbf{5})$, respectively. The reaction of of 2 with SnCl_{2} in 1:1 ratio afforded the chlorotin(II) complex $[\mathrm{Sn}\{\mathrm{CH}-$ $\left.\left.\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe} 3\right)(2-\mathrm{Py})\right\} \mathrm{Cl}\right]$ (6). Further reaction of 6 with 1 equiv of $\mathbf{2}$ afforded compound $\mathbf{4}$. However, similar reaction of 1 equiv of 2 with $\mathrm{MCl}_{2}(\mathrm{M}=\mathrm{Ge}, \mathrm{Pb})$ afforded only intractable oily substances which could not be characterized. It is proposed that the reactions proceeded through the alkylmetal(II) chloride intermediate $\left\{\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{P}=\mathrm{NSiMe} e_{3}\right)(2-\mathrm{Py}) \mathrm{CH}\right\} \mathrm{MCl}$ similar to $\mathbf{6}$, followed by further abstraction of the methine proton by lithium complex 2 and elimination of LiCl and $\mathbf{1}$ to form the unstable metallavinylidene " $: \mathrm{M}=\mathrm{C}\left(\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{P}=\mathrm{NSiMe} 3\right)(2-\mathrm{Py})$ ". This intermediate then undergoes a "head-to-tail" cycloaddition to form the 1,3-dimetallacyclobutanes. The lithium complex 2 acts both as the ligand-tranfer reagent and strong base for dehydrochlorination (Scheme 2).

[^0]
Scheme 1

Scheme 2

The reaction of 2 equiv of $\mathbf{6}$ with $\mathrm{Pb}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$ afforded the mixed-metal 1,3-stanna-pumbacyclobutane $\left[1-\mathrm{Sn}\left\{\mathrm{C}\left(\operatorname{Pr}^{\mathrm{i}} \mathrm{P}=\right.\right.\right.$ $\left.\left.\left.\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})\right\} 3-\mathrm{Pb}\left\{\mathrm{C}\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})\right\}\right]$ (7). Compound 7 could also be a "head-to-tail" cycloaddition product from the stannavinylidene ": $\mathrm{Sn}=\mathrm{C}\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})$ " and plumbavinylidene " $: \mathrm{Pb}=\mathrm{C}\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})$ ".

The structurally related ligand bis(iminophosphorano)methane $\mathrm{CH}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}\right.$ has been used in the synthesis of metal methanide and bimetallic methandiide complexes of aluminum. ${ }^{7}$ Furthermore, the dimeric and tetrameric $\mathrm{Cr}(\mathrm{II})$-bridging carbene complexes $\left[\mathrm{Cr}\left\{\mu_{2}-\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)_{2}-\kappa^{4} \mathrm{C}, \mathrm{C}^{\prime} \mathrm{N}, \mathrm{N}^{\prime}\right\}\right]_{2}$ and $\left[\mathrm{Cr}_{2}\left(\mu_{2}-\right.\right.$ $\left.\mathrm{Cl})_{2}\left\{\mu_{2}-\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)_{2}-\kappa^{4} \mathrm{C}, \mathrm{C}^{\prime} \mathrm{N}, \mathrm{N}^{\prime}\right\}(\mathrm{LiCl})(\mathrm{THF})_{2}\right]_{2},{ }^{8}$ and the "Pincer" carbene complexes $\left[\mathrm{Zr}\left\{\mathrm{CPh}_{2} \mathrm{P}=\mathrm{NR}\right)_{2}-\kappa^{3} \mathrm{C}, \mathrm{N}, \mathrm{N}^{\prime}\right\}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Ph})_{2}\right]\left(\mathrm{R}=\right.$ adamantyl or $\left.\mathrm{SiMe}_{3}\right),{ }^{9}$ were also derived from the bis(iminophosphorano)methane ligand.

Compounds 2-7 were characterized by elemental analysis, ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and ${ }^{119} \mathrm{Sn}$ NMR spectroscopy. The ${ }^{13} \mathrm{C}$ signals of the quarternary methandiide carbon in 3-5 and 7 were not observed. For compounds 3-7, the single-crystal X-ray structures had been determined.

The molecular structure of 1,3-digermacyclobutane 1,3-[Ge$\left.\left\{\mathrm{C}\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})\right\}\right]_{2}(\mathbf{3})$ as shown in Figure 1 comprises two germanium atoms bridged by two iminophosphorano(pyridyl)methandiide carbon centers, forming a 1,3-digermacyclobutane ring. ${ }^{10}$ The geometry around each of the three-coordinate germanium centers is trigonal pyramidal. The imino nitrogen arms of the ligands dangle back and coordinate to the germanium centers forming two nonplanar GeCPN four-membered rings. These four-membered rings together with the $\mathrm{Ge}_{2} \mathrm{C}_{2}$ ring form a "step-like" structure framework.

In contrast, the molecular structures of 1,3-distannacyclobutane $1,3-\left[\mathrm{Sn}\left\{\mathrm{C}\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})\right\}\right]_{2}$ (4) and 1,3-diplumbacyclobutane $1,3-\left[\mathrm{Pb}\left\{\mathrm{C}\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})\right\}\right]_{2}$ (5) are somewhat different from that of $\mathbf{3}$. The environments around the metal centers in each of $\mathbf{4}$ and $\mathbf{5}$ are different due to coordination to different groups. One metal center adopts a tetrahedral geometry,

[^1]

Figure 1. ORTEP drawing of 3; 30\% thermal ellipsoids are shown; hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles (deg): $\mathrm{Ge}(1)-\mathrm{N}(2) 2.055(2), \mathrm{Ge}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right) 2.064(2), \mathrm{Ge}(1)-\mathrm{C}(6)$ 2.107(3), $\mathrm{Ge}(1)-\mathrm{C}\left(6^{\prime}\right) 2.132(3), \mathrm{Ge}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right) 2.079(3), \mathrm{Ge}\left(1^{\prime}\right)-\mathrm{C}(6) 2.154-$ (3), $\mathrm{P}(1)-\mathrm{N}(2) 1.632(2), \mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right) 1.630(2) ; \mathrm{Ge}(1)-\mathrm{C}(6)-\mathrm{Ge}\left(1^{\prime}\right)$ 90.29(10), $\mathrm{Ge}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{Ge}(1) 91.68(10), \mathrm{N}(2)-\mathrm{Ge}(1)-\mathrm{C}(6) 74.66(9)$, $\mathrm{N}(2)-\mathrm{Ge}(1)-\mathrm{C}\left(6^{\prime}\right) 98.35$ (9), $\mathrm{C}(6)-\mathrm{Ge}(1)-\mathrm{C}\left(6^{\prime}\right) 88.58(10), \mathrm{N}(2)-\mathrm{Ge}-$ (1) $-\mathrm{P}(1) 36.58(6), \mathrm{C}(6)-\mathrm{Ge}(1)-\mathrm{P}(1) 40.13(7), \mathrm{C}\left(6^{\prime}\right)-\mathrm{Ge}(1)-\mathrm{P}(1) 104.04-$ (8), $\mathrm{N}\left(2^{\prime}\right)-\mathrm{Ge}\left(\mathrm{l}^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right) 76.38(9), \mathrm{N}\left(2^{\prime}\right)-\mathrm{Ge}(1)-\mathrm{C}(6) 96.91(9), \mathrm{C}\left(6^{\prime}\right)-$ $\mathrm{Ge}(1)-\mathrm{C}(6) 88.70(10), \mathrm{N}(21)-\mathrm{Ge}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right) 36.62$ (6)
being bonded to the methandiide carbons and coordinated to two imino nitrogens. The other metal center also adopts a tetrahedral geometry, but bonded to the methandiide carbons and coordinate to two pyridyl nitrogens. As compared to the $\mathrm{Ge}(\mathrm{II})$ centers in $\mathbf{3}$, the additional coordination from the pyridyl groups is presumably due to the larger atomic sizes of the $\mathrm{Sn}(\mathrm{II})$ and Pb (II) atoms. The steric crowding of the smaller Ge (II) in 3 prevents the close approach of the pyridyl groups.

The molecular structure of mixed-metal cyclobutane analogue 7 (Figure 2) ${ }^{11}$ also adopts the structure similar to $\mathbf{4}$ and 5, with the $\mathrm{Pb}(\mathrm{II})$ atom coordinated to the slightly more bulky imino nitrogens, and the $\mathrm{Sn}(\mathrm{II})$ atom is coordinated to the two pyridyl nitrogens. With the $\mathrm{M}_{2} \mathrm{C}_{2}$ or SnCPbC ring as the base, the nonplanar $\mathrm{MCC}(\mathrm{py}) \mathrm{N}(\mathrm{py})$ and $\mathrm{MCPN}(\mathrm{imino})$ rings form the flaps of an "open box"-like structure framework.

The bond distances within the dimetallacyclobutane rings in each of compounds $\mathbf{3}-\mathbf{5}$ are different. The average $\mathrm{M}-\mathrm{C}$ distance of $2.118 \AA$ in $\mathbf{3}$ is significantly longer than the $\mathrm{Ge}-\mathrm{C}$ distance of $1.803(4) \AA$ in fluorenylidene-substituted germene ${ }^{12}$ and 1.970(2) \AA in digermacyclopropane $\mathrm{Ar}^{\prime}{ }_{2} \mathrm{GeCH}_{2} \mathrm{GeAr}^{\prime}{ }_{2}\left(\mathrm{Ar}^{\prime}{ }_{2}=2,4,6-\right.$
(11) Crystal data for 7: orthorhombic, space group: Pbca, orange crystals, $a=13.4402(7) \mathrm{A}, b=18.2669(10) \mathrm{A}, c=31.5543(18) \mathrm{A}, V=7746.9$ (7) $\AA^{3}, Z=8, T=293 \mathrm{~K}, R=0.0404, R_{\mathrm{w}}=0.1022, \mathrm{GOF}=0.962$
(12) Lazraq, M.; Escudié, J.; Couret, C.; Satgé, J.; Drager, M.; Dammel, R. Angew. Chem., Int. Ed. Engl. 1988, 27, 828.

Figure 2. ORTEP drawing of 7; 30\% thermal ellipsoids are shown; hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles (deg): $\mathrm{Pb}(\mathrm{l})-\mathrm{C}(26) 2.434(7), \mathrm{Pb}(1)-\mathrm{C}(6) 2.451(8), \mathrm{Pb}(1)-\mathrm{N}(2)$ $2.617(6), \mathrm{Pb}(1)-\mathrm{N}(4) 2.640(6), \mathrm{Sn}(1)-\mathrm{C}(6), 2.329(7), \mathrm{Sn}(1)-\mathrm{C}(26)$ $2.310(8), \mathrm{Sn}(1)-\mathrm{N}(3) 2.500(6), \mathrm{Sn}(1)-\mathrm{N}(1) 2.503(6), \mathrm{P}(1)-\mathrm{N}(2) 1.601-$ (6), $\mathrm{P}(2)-\mathrm{N}(4) 1.580(7) ; \mathrm{C}(26)-\mathrm{Pb}(1)-\mathrm{C}(6) 87.7(2), \mathrm{C}(26)-\mathrm{Pb}(1)-\mathrm{N}(2)$ $102.8(2), \mathrm{C}(6)-\mathrm{Pb}(1)-\mathrm{N}(2) 62.5(2), \mathrm{C}(26)-\mathrm{Pb}(1)-\mathrm{N}(4) 62.2(2), \mathrm{C}(6)-$ $\mathrm{Pb}(1)-\mathrm{N}(4) 102.3(2), \mathrm{N}(2)-\mathrm{Pb}(1)-\mathrm{N}(4) 160.31(19), \mathrm{C}(26)-\mathrm{Sn}(1)-\mathrm{C}(6)$ 93.6(3), $\mathrm{C}(26)-\mathrm{Sn}(1)-\mathrm{N}(3) 57.8(2), \mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{N}(3) 104.5(2), \mathrm{C}(26)-$ $\operatorname{Sn}(1)-\mathrm{N}(1) \quad 103.9(2), \mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{N}(1) \quad 57.9(2), \mathrm{N}(3)-\operatorname{Sn}(1)-\mathrm{N}(1)$ 155.8(2).
$\operatorname{Pr}^{\mathrm{i}}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$). ${ }^{3,13}$ The average $\mathrm{Sn}-\mathrm{C}$ distances of $2.325 \AA$ (in 4) and $2.320 \AA$ (in 7) are longer than the $\mathrm{Sn}-\mathrm{C}$ distance of 2.025(4) \AA in stannene $\left[\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CHH}_{2} \mathrm{Sn}=\mathrm{C}\left\{\left(\mathrm{BBu}^{\mathrm{t}}\right)_{2} \mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right]\right.\right.$. ${ }^{3,14}$ The metal-metal distances in these dimetallacyclobutanes are too long to consider the existence of bonding interactions. The stability of these low-valent dimetallacyclobutanes are presumably attributed to the coordination from the imino and pyridyl groups.

In summary, lithium iminophosporano(pyridyl)methanide complex reacts with $\mathrm{MCl}_{2}(\mathrm{M}=\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$ to give novel low-valent group 14 1,3-dimetallacyclobutanes. The reaction of tin(II)methanide chloride $\mathbf{6}$ with $\mathrm{Pb}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$ gave the mixed-metal 1,3-stanna-plumbacyclobutane. These metallacyclobutanes could be the products from cycloaddition of the unstable metallavinylidene " $: \mathrm{M}=\mathrm{C}\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{P}=\mathrm{NSiMe}_{3}\right)(2-\mathrm{Py})$ ".

Acknowledgment. We thank the Hong Kong Research Grants Council for financial support.

Supporting Information Available: Experimental procedures for preparation of $\mathbf{1 - 7}$, spectral data, and crystallographic data (PDF). This material is available free of charge via Internet at http://pubs.acs.org.

JA0040619

(13) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1999, 9, 2061.
(14) Meyer, H.; Baum, G.; Massa, W.; Berger, S.; Berndt, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 546.

[^0]: (1) Barrau, J.; Rima, G.; Satge, J. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 107, 99.
 (2) Toltl, N. P.; Leigh, W. J. J. Am. Chem. Soc. 1998, 120, 1172.
 (3) Escudie, J; Ranaivonjatovo, H. Adv. Organomet. Chem. 1999, 44, 113
 (4) Baines, K. M.; Stibbs, W. G. Adv. Organomet. Chem. 1996, 39, 275.
 (5) Harper, W. H.; Ferrall, E. A.; Hilliard, R. K.;. Stogner, S. M.; Grev, R.
 S.; Clouthier, D. J. J. Am. Chem. Soc. 1997, 119, 8361.
 (6) Stogner, S. M.; Grev, R. S. J. Chem. Phys. 1998, 5458.

[^1]: (7) Kasani, A.; McDonald, R.; Cavell, R. G. Organometallics 2000, 9314.
 (8) Kasani, A.; McDonald, R.; Cavell, R. G. J. Chem. Soc., Chem. Commun. 1999, 1993.
 (9) Kamalesh, R. P.; McDonald, R.; Decker, S. A.; Klobukowski, M.; Cavell, R. G. Organometallics 1999, 18, 4226.
 (10) Crystal data for 3: triclinic, space group: $P-1$, yellowish-orange crystals, $a=12.2138(9) \AA, b=12.792(1) \AA, c=13.206(1) \AA, \alpha=80.997-$ $(2)^{\circ}, \beta=85.355(2)^{\circ}, \gamma=63.923(1)^{\circ}, V=1830.3(2) \AA^{3}, Z=2, T=293 \mathrm{~K}$, $R=0.0369, R_{\mathrm{w}}=0.0753, \mathrm{GOF}=0.898$.

